Spectral Estimates for Magnetic Operators.
نویسندگان
چکیده
منابع مشابه
Spectral estimates for periodic fourth order operators
We consider the operator H = d 4 dt4 + d dtp d dt + q with 1-periodic coefficients on the real line. The spectrum of H is absolutely continuous and consists of intervals separated by gaps. We describe the spectrum of this operator in terms of the Lyapunov function, which is analytic on a two-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov...
متن کاملTunneling Estimates for Magnetic Schrödinger Operators
We study the behavior of eigenfunctions in the semiclassical limit for Schrödinger operators with a simple well potential and a (non-zero) constant magnetic field. We prove an exponential decay estimates on the low-lying eigenfunctions, where the exponent depends explicitly on the magnetic field strength.
متن کاملEstimates in Lp for Magnetic Schrödinger Operators
We study the magnetic Schrödinger operator H(a,V ) in R, n ≥ 3. The L (1 < p < ∞) and weak-type (1,1) estimates are obtained under certain conditions, given in terms of the reverse Hölder inequality, on the magnetic field B = curl a and the electrical potential V . In particular, we show that the L and weak-type (1,1) estimates hold if the components of a are polynomials, and V is a nonnegative...
متن کاملSpectral estimates for matrix-valued periodic Dirac operators
We consider the first order periodic systems perturbed by a 2N × 2N matrix-valued periodic potential on the real line. The spectrum of this operator is absolutely continuous and consists of intervals separated by gaps. We define the Lyapunov function, which is analytic on an associated N-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov fun...
متن کاملEdge currents and eigenvalue estimates for magnetic barrier Schrödinger operators
We study two-dimensional magnetic Schrödinger operators with a magnetic field that is equal to b > 0 for x > 0 and −b for x < 0. This magnetic Schrödinger operator exhibits a magnetic barrier at x = 0. The unperturbed system is invariant with respect to translations in the ydirection. As a result, the Schrödinger operator admits a direct integral decomposition. We analyze the band functions of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1996
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-12604